Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages.

نویسندگان

  • Sonja Burkhardt
  • Maria P Jiménez de Bagüés
  • Jean-Pierre Liautard
  • Stephan Köhler
چکیده

The facultatively intracellular pathogen Brucella, characterized by its capacity to replicate in professional and non professional phagocytes, also causes abortion in ruminants. This property has been linked to the presence of erythritol in the placenta, as brucellae preferentially utilize erythritol. The ery operon encodes enzymes involved in erythritol metabolism, and a link with virulence has since been discussed. Allelic exchange mutants in eryC of Brucella suis were erythritol sensitive in vitro with a MIC of 1 to 5 mM of erythritol. Their multiplication in macrophage-like cells was 50- to 90-fold reduced, but complementation of the mutant restored wild-type levels of intracellular multiplication and the capacity to use erythritol as a sole carbon source. In vivo, the eryC mutant colonized the spleens of infected BALB/c mice to a significantly lower extent than the wild type and the complemented strain. Interestingly, eryC mutants that were in addition spontaneously erythritol tolerant nevertheless exhibited wild-type-like intramacrophagic and intramurine replication. We concluded from our results that erythritol was not an essential carbon source for the pathogen in the macrophage host cell but that the inactivation of the eryC gene significantly reduced the intramacrophagic and intramurine fitness of B. suis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aromatic compound-dependent Brucella suis is attenuated in both cultured cells and mouse models.

The aroC gene of the facultative intracellular pathogen Brucella suis was cloned and sequenced. The cloned aroC gene complements Escherichia coli and Salmonella enterica serovar Typhimurium aroC mutants. A B. suis aroC mutant was found to be unable to grow in a defined medium without aromatic compounds. The mutant was highly attenuated in tissue culture (THP1 macrophages and HeLa cells) and mur...

متن کامل

Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages.

Brucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both cell types. However, the molecular mechanisms and ...

متن کامل

Identification of a new virulence factor, BvfA, in Brucella suis.

We report the identification of BvfA (for Brucella virulence factor A), a small periplasmic protein unique to the genus Brucella, which is essential for the virulence of Brucella suis. A BvfA knockout mutant was highly attenuated both in in vitro macrophage infection assays and in vivo in the murine model of brucellosis. Fluorescence-activated cell sorting analysis with green fluorescent protei...

متن کامل

Targeting of the virulence factor acetohydroxyacid synthase by sulfonylureas results in inhibition of intramacrophagic multiplication of Brucella suis.

The acetohydroxyacid synthase (AHAS) of Brucella suis can be effectively targeted by the sulfonylureas chlorimuron ethyl and metsulfuron methyl. Growth in minimal medium was inhibited, and multiplication in human macrophages was totally abolished with 100 microM of sulfonylureas. Metsulfuron methyl-resistant mutants showed reduced viability in macrophages and reduced AHAS activity.

متن کامل

Restoring virulence to mutants lacking subunits of multiprotein machines: functional complementation of a Brucella virB5 mutant

Complementation for virulence of a non-polar virB5 mutant in Brucella suis 1330 was not possible using a pBBR-based plasmid but was with low copy vector pGL10. Presence of the pBBR-based replicon in wildtype B. suis had a dominant negative effect, leading to complete attenuation in J774 macrophages. This was due to pleiotropic effects on VirB protein expression due to multiple copies of the vir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 73 10  شماره 

صفحات  -

تاریخ انتشار 2005